
The University of New South Wales

Final Exam

14s2

COMP3151/COMP9151

Foundations of Concurrency

Time allowed: 2 hours
Total number of questions: 4
Total number of marks: 50

Textbooks, lecture notes, etc. are not permitted, except for 2 double-sided A4
sheets of hand-written notes.

Calculators may not be used.

Not all questions are worth equal marks.

Answer all questions.

Answers must be written in ink.

You can answer the questions in any order.

You may take this question paper out of the exam.

Write your answers into the answer booklet provided. Use a pencil or the back
of the booklet for rough work. Your rough work will not be marked.

Shared-Variable Concurrency (20 Marks)

Question 1 (20 marks)

(a) 5 marks Recall Dekker’s algorithm:

Dekker’s algorithm
boolean wantp ← false, wantq ← false
integer turn ← 1

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: while wantq q3: while wantp
p4: if turn = 2 q4: if turn = 1
p5: wantp ← false q5: wantq ← false
p6: await turn = 1 q6: await turn = 2
p7: wantp ← true q7: wantq ← true
p8: critical section q8: critical section
p9: turn ← 2 q9: turn ← 1
p10: wantp ← false q10: wantq ← false

It solves the critical section problem on sequentially consistent hardware. Prove by giving
a counter example that Dekker’s algorithm no longer guarantees mutual exclusion if we
run it on x86-TSO.

(b) 10 marks Someone suggests the following adaptation to x86-TSO.

Dekker’s algorithm TSO
boolean wantp ← false, wantq ← false
integer turn ← 1

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: MFENCE q3: MFENCE
p4: while wantq q4: while wantp
p5: if turn = 2 q5: if turn = 1
p6: wantp ← false q6: wantq ← false
p7: MFENCE q7: MFENCE
p8: await turn = 1 q8: await turn = 2
p9: wantp ← true q9: wantq ← true
p10: MFENCE q10: MFENCE
p11: critical section q11: critical section
p12: turn ← 2 q12: turn ← 1
p13: wantp ← false q13: wantq ← false
p14: MFENCE q14: MFENCE

Prove that it guarantees mutual exclusion on x86-TSO.

(c) 5 marks Which MFENCE instructions can be omitted in pairs (to preserve symmetry)
without sacrificing mutual exclusion? Justify your answer briefly.

2

Message-Passing Concurrency (30 Marks)

Answers to questions that require programming can be formulated using Ben-Ari’s pseudo-code
notation, Promela, or (if you must) C with MPI. Shared mutable state, semaphores, monitors
etc. are not allowed in answers to the programming questions because this is the message
passing section.

Question 2 (10 marks)

Given are n producers and a single consumer. They share an initially empty crate that can hold
up to k > 0 products. The consumer naps until the crate is full, then consumes all products in
the crate and returns to napping. Each producer repeatedly fabricates one product and puts it
in the crate; the producer who fills the crate awakens the consumer. The crate is inaccessible
for producers if it is full or if the consumer is in the process of comsuming.

Write a program to simulate the above with one process for the consumer and n processes for
the producers.

Question 3 (8 marks)

Recall the Byzantine Generals problem.

A group of Byzantine armies is surrounding an enemy city.
The ballance of force is such that if they all attack together,
they can capture the city; otherwise they must retreat in
order to avoid defeat.

The generals of the armies have reliable messengers who
successfully deliver any message sent from one general to
another. However, some of the generals may be traitors
endeavouring to bring about defeat of the Byzantine armies
by sending deceiving messages.

Under certain conditions the Byzantine General algorithm ensures that all loyal generals reach
consensus on a plan and that this plan is almost the same as the majority vote of their initial
choices; if the vote is tied, the final decision is to retreat.

(a) Suppose we have 7 generals, up to 2 of which might be traitors. For 4 marks, show why a
third round of relaying messages is needed if the traitors do their best to confuse the loyal
generals. That is, construct a scenario where two rounds do not suffice for the generals
to make a decision.

(b) Drop one of the loyal generals and show for 4 marks that even a third or fourth round
can’t guarantee consensus for 6 generals with up to 2 traitors. Draw knowledge trees for
two loyal generals that come to different conclusions.

3

Question 4 (12 marks)

Given two disjoint sets of integers S0 and T0, their union S0 ∪T0 has to be partitioned into two
subsets S and T such that |S| = |S0| and |T | = |T0|, and every element of S is smaller than
every element of T .

Prove the synchronous transition diagram given below correct with respect to precondition

S = S0 ∧ T = T0 ∧ S 6= ∅ ∧ S ∩ T = ∅ ∧ x 6= m ∧ y 6= n

and postcondition

S ∪ T = S0 ∪ T0 ∧ S ∩ T = ∅ ∧ |S| = |S0| ∧ |T | = |T0| ∧maxS < minT

where, by convention, min ∅ = ∞. Either (a) use Levin & Gries or AFR for full marks or (b)
construct the product transition diagram and use Floyd for half marks.

s1 `1 `2 `3

t1

s2 `′1 `′2 `′3

t2

m 6= x→ m := maxS A!m→ S := S \ {m}

B?x→ S := S ∪ {x}m = x

A?y → T := T ∪ {y} n := minT

B!n→ T := T \ {n}n = y

4

